

Programmable logic controller XG1/XL3/XD/XC series

XINJE WUXI XINJE ELECTRIC CO., LTD.

4th Floor Building 7,Originality Industry park, Wuxi, China Tel: (510) 85134136 Fax: (510) 85111290 www.xinje.com

XINJE wechat ID

www.xinje.com 2017

XG1^{NEW} series middle-sized PLC

XL3 NEW series ultrathin PLC

Middle-sized PLC

XG1 series

New light appearance

Features

- Ethernet communication port, fast speed and powerful functions
- Motion control function
- More reliable

Ultrathin PLC

XL3 Series

Small size, powerful function

Features

- Ultrathin appearance, compact and practical, fit for different environment
- Good compatibility
- Support max 10 extension modules Outstanding cost performance
- Save installation sapce

Dimension (unit: mm)

XD series

XD2 series XD3 series XD5 series XDM series XDC series

Faster processing speed

• Rich expansion modules

• Stable performance, meet different needs

XD Series

After XC series PLC, XINJE company developped XD series PLC which has faster speed, better performance and fit for various requirments.

	Da
256K prog	ram ca
I/O sequer	nce con

XD5-24/32/48/60 384K program capacity
 I/O sequence control
 USB communication port X-NET fieldbus Max 572 I/O points Basic instruction 0.02~0.05us 200KHz pulse output 2-axis pulse output 200KHz pulse output

	Motion contro	l model
XDM-24T4/3	2T4/60T4	XDM-6
 384K program capacity I/O sequence control Standard model PLC USB communication port X-NET fieldbus Function block programming 200KHz pulse output 	Max 572 I/O points Basic instruction 0.02~0.05us Linear and circular interpolation Follow-up function 4-axis pulse output	384K program capacity 1/0 sequence control Standard model PLC USB communication poo X-NET fieldbus Function block program 200KHz pulse output

Enhanced model XD5-24T4/32T4 XD5-48T6/60T6 384K program capacity X-NET fieldbus I/O sequence control Max 572 I/O points USB communication port Basic instruction 0.02~0.05us 384K program capacity X-NET fieldbus I/O sequence control Max 544 I/O points USB communication port Basic instruction 0.02~0.05us 4-axis pulse output ■ 200KHz pulse output ■ 6-axis pulse output

High speed processing

Basic instruction processing speed is 0.02~0.05µs, scanning time is 0.5ms for 10000 steps, program capacity is 256K~384K, the integrated speed is 12~15 times of XC series.

Rich extensions

XD series PLC has rich I/O modules, analog I/O modules, temperature modules, BD board, left extension modules. The PLC unit can connect 10~16 modules, 1~2 BD board, 1 left extension module.

Series	Туре	Left extension module	BD board	Right extension module
XD2	16 points	1	0	0
16 points		1	0	10
XD3	24/32 points	1	1	10
	48/60 points	1	2	10
	24/32/24T4/32T4 points	1	1	16
XD5	48/60 points	1	2	16
	48T6/60T6 points	1	2	16
VDM	24T4/32T4 points	1	1	16
ADIVI	60T4/T10 points	1	2	16
YDC	24/32 points	1	1	16
XDC	60 points	1	2	16

• Output extension module has two types which are transistor and relay.

• Extension BD board

• I/O extension module

CPU processing spe

► The small card can install on the PLC directly, save space, with wireless and wired communication function.

▶ To extend the I/O numbers, 8~32 points, the PLC can extend to 572 points.

• Left extension module

▶ PLC can transfer the data through WIFI, RS232 or RS485 with the left extension ED module.

• Analog and temperature extension module

- D/A and A/D transformation function. Apply to process control system including temperature, flow, liquid level, pressure.
- ▶ PID function, only four parameters to set. Fit for various applications, flexible using, high control accuracy.
- ► XD-E6TC-P, XD-E6PT-P have PID control for each channel, with auto-tune function, transfer data with PLC by instruction FROM and TO.

XD3 series Larger soft component capacity

Communication function

• Multi-communication ports (up to 5), support RS232, RS485, motion fieldbus, X-NET fieldbus, Ethernet, can connect VFD, meter and other devices, networking freely.

Faster data exchange speed between extension module and main PLC

• The data exchange between extension module and main PLC of XD series is SPI serial communication instead of parallel communication which used by XC series, the speed is faster (μ s).

100-segment high speed count interruption function

- High speed count interruption, good real time performance.
- XD series high speed counter has 100 segments of 32 bits preset value. The interruption is produced when the count value difference of each segment is equal to the preset value.

Subdivided soft component

- Subdivided soft component makes the ladder chart more visually.
- Normal soft component, power-off retentive and special soft component is different from each other by writing format.
- Single phase and AB phase of high speed count also can be distingui

	Туре	Symbol	Notes	
Type Bit object		Х	Input terminal	
		Y	Output terminal	
Type Bit object RAM	M	Internal coil		
	Bit object	S	Process coil	
		SM	Special internal coil	similar to the
Bit object	Т	Timer coil		
E	Bit object	ET	Precise timer coil	Similar to T60
		С	Counter coil	
		HM	Power-off retentive internal coil	Similar to pov
		HS	Power-off retentive process coil	Similar to pov
		HT	Power-off retentive timer coil	New soft com
		HC	Power-off retentive counter coil	Similar to pov
		HSC	High speed counter coil	Similar to hig phase and AB
		SEM	BLOCK WAIT instruction special coil	The wait coil of
		D	register	
		TD	Timer register	
		ETD	Precise timer register	
		CD	Counter register	
ş	RAM	SD	Special register	
rd		ID	Analog sampling register	
0bj		QD	Analog output register	
ect		HD	Power-off retentive register	
		HTD	Power-off retentive timer register	
		HCD	Power-off retentive counter register	
		HSCD	High speed counter register	
		HSD	Power-off retentive special register	
	EL 4 011	FD	Flash register	protect the cu
	FLASH	SFD	Special flash register	

High speed count

• XD series PLC can configure 2 to 10 channels of 32-bit high speed count, the max frequency can up to 80KHz, it can connect the rotary encoder and count its value directly.

▶ count input

Multi-counting mode

Optimized Modbus instruction

More than one modbus instruction can be triggered by one condition in the main program, these instructions will be executed one by one as the protocol station request. It will not run two instructions at the same time and cause error.

ished by writing format.	
Remark	
special auxiliary register after M8000 of XC series I	PLC
00 to T618 of XC series PLC	
ver-off retentive internal coil of XC series PLC, defa ver-off retentive process coil of XC series PLC, defa ponent, the timer value and state will be kept even t ver-off retentive counter coil of XC series PLC, defa h speed counter coil C600 to C634 of XC series PLC phase mode, AB phase has 2-time frequency and 4 of XC series PLC can be anyone, in XD series it only	ult is M3000 to M7999 Jult is S512 to S1023 the PLC power is off Jult is C320 to C630 C, XD series PLC only have single 1-time frequency / can be SEM
istomer's intellectual property	
 There are two counting modes incomode, max frequency 80KHz) and A max frequency 50KHz). 2-time frequency mode A	cluding single phase (incremental B phase (2-time/4-time frequency, $A \xrightarrow{-1} $
B incremental counting	B reduced counting
x K1 K500 K3 M1 K2 v K1 K500 K3 M1 K2 w K1 K500 D1 K2	M1 COLR K1 K500 K3 M1 K2 MOLW K1 K500 K3 M1 K2 REGW K1 K500 D1 K2
хс	XD3

Powerful pulse instruction

XD series PLC get rid of the disadvantages of XC pulse function too simple and too many pulse instructions. XD integrated the XC pulse instruction PLSR, PTO, PLSF in one, make the function powerful.

Powerful communication and networking function

XD series PLC communication port not only support Modbus protocol, but also support other complicated network. Users can make free format protocol to communicate with printer and meters.

Modbus network

XD series PLC support Modbus (RTU and ASCII) protocol master and slave mode. When PLC is master station, it will send requests to other devices which respond it. When PLC is slave station, it will answer the master station.

200KHz 10 channels pulse output

XD2/XD3/XDC have 2 channels of pulse output, XD5 has 2 to 6 channels of pulse output, XDM has 4 to 10 channels pulse output. Multi-mode output by different instructions. The frequency can up to 200KHz.

- It needs transistor output PLC for pulse output, such as XD3-16T-E, XD3-60RT-E.
- XD5-24T4/32T4 have 4 channels of pulse output (Y0, Y1, Y2, Y3).
- XD5-48T6/60T6 have 6 channels of pulse output (Y0, Y1, Y2....Y5). • XDM series PLC has 4 to 10 channels pulse output (Y0, Y1, Y2..... Y11).

series	model	pulse output channel	pulse output terminal
XD2	16T	2	Y0/Y1
XD3	all the transistor output model	2	Y0/Y1
	24T/32T/48T/60T	2	Y0/Y1
XD5	48T6/60T6	6	Y0/Y1/Y2/Y3/Y4/Y5
XB0	24T4/32T4	4	Y0/Y1/Y2/Y3
	24T4/32T4 and 60T4	4	Y0/Y1/Y2/Y3
XDM	60T10	10	Y0/Y1/Y2/Y3/Y4/Y5/
	00110	10	Y6/Y7/Y10/Y11
YDC	24T/32T	2	Y0/Y1
XDC	48T/60T	2	Y0/Y1

Interruption

XD series PLC interruption function includes external interruption, timing interruption, 100 segments high speed counter interruption. It can do some special operation by calling the interruption without PLC scanning period influence.

Timing interruption

► To run appointed program when the main program is long; to run the program every certain time. The timing interruption is useful for these occasions. It is not affected by PLC scanning period. It will run the subprogram every n ms.

► XD series PLC have 20 channels timing interruption, it is 2 times of XC series PLC.

Support C programming(the pioneer in the industry)

PWM pulse width modulation

- PWM instruction can modulate the pulse width
- The subdivision accuracy is 128 times of
- XC series PLC, up to 1/65536
- The output frequency is higher than XC
- series PLC, up to 200KHz
- Control the inverter and DC motor by this function

• External interruption

- ► The input terminal X is the input of interruption. Each terminal corresponds to an interruption which is activated by falling or rising edge.
- ► XD series PLC have more interruption terminals than XC series.

► The falling edge and rising edge can be used at the same time for XD series external interruption

only can use falling or rising edge of different interruption

can use the falling or rising edge of same interruption

PID control

- XD series PLC support PID control instruction and auto-tune function
- User can get the best sampling time and PID parameters via auto-tune
- to improve the control accuracy
- Two control methods: step-response and critical oscillation, applied to more occasions

Sequence block

• All the instructions in the sequence block will run one by one. The next instruction will run after the present instruction completed

• The sequence block can optimize the program

Frequency measurement

Password protection

• 6 bits ASCII code, protect the program security

• The soft component FS can protect the intellectual property right of customers

• 32 bits instruction FRQM can measure the frequency

Built-in clock, Li-battery power loss retentive

Real time clock

XD series PLC all have RTC inside

• XD-CLOCK-BD can apply to high precise clock occasions

 Clock protection function: the PLC clock cannot be changed through communication when secret downloading program in advanced mode

Self-diagnosis

• Power on self-diagnosis, monitor the timer, grammar checking

Precise timing

- 32-bit instruction STR can do precise timing
- The precise timer will generate an interruption when it reaches the
- timer value, each precise timer has related interruption flag
- The precise timer is 1ms 32 bits timer

Compact size, easy to installation

- Compact size, two installation methods
- Easy to change the Li-battery of XD series PLC without opening the PLC cover

XD2 basic type

I/O numbers: 16

Data processing function, high speed count, high speed pulse output, communication, real time clock, pulse width modulation (PWM), frequency measurement, precise timing, interruption and so on. The processing speed is 12 times of XC series. Cannot extend modules or BD. ED board.

32-bit CPU.

■ XD2 provides 16 points I/O, is fit for basic application 2 RS232 ports and 1 RS485 port, support

- Modbus, free format and X-NET communication.
- Program capacity: 256KB.
- The CPU processing speed is 12 times of
- XC series.
- Basic instructions: 0.02~0.05us, 6000 steps of instruction only need 0.1~0.2ms.
- 2-axis 200KHz pulse output. Powerful password function, protect the
- intellectual property right of customers.

Built-in high speed counter			
incremental mode AB p			nase mode
count ID	max frequency	count ID	max frequency
2	10KHz	2	5KHz

XD5 enhanced type

I/O numbers: 24/32, 48/60

The same functions to XD3. The processing speed is 15 times of XC series. Larger internal space. With serial port and one USB download port. All the models can connect 16 extension modules, 1 or 2 BD boards, 1 left extension module.

	32-bit CPU.
	XD5 provides 24/32/48/60 points I/O, is fit
	for various applications.
	USB port makes the downloading and
	communication very fast.
	Program capacity: 25K steps/data register
1/	ID: 70K words.

- The CPU processing speed is 15 times of
- Basic instructions: 0.02~0.05us, 6000 steps
- of instruction only need 0.1~0.2ms.

counter max frequency counter max frequency 3/4/6 80KHz 3/4/6 50KHz

XDC motion control fieldbus type

I/O numbers: 24/32, 48/60

The processing speed is 15 times of XC series. Support floating-point calculation, 2 channels pulse output, 4 channels AB phase high speed count, and all the functions of XD series such as interruption, PID. All the models can connect 16 extension modules, 1 or 2 BD boards, 1 left extension module. Support SD card for data storage, with 2 serial ports, support motion control fieldbus, control 20-axis motions at the same time.

- 2-axis to 6-axis 200KHz pulse output.
 - Powerful password function, protect the intellectual property right of customers.
 - Built-in high speed counter incremental mode AB phase mode

XD3 standard type

I/O numbers: 16, 24/32, 48/60

Data processing function, high speed count, electronic cam, real time clock, communication (Modbus RTU/ASC II), pulse width modulation (PWM), frequency measurement, precise timing, interruption and so on. The processing speed is 12 times of XC series. All the models can connect 10 extension modules, 1 or 2 BD boards, 1 left extension module.

32-bit CPU

- XD3 provides 16/24/32/48/60 points I/O, is fit for various applications
- USB port makes the downloading and
- communication very fast
- Program capacity: 10K steps/data register ID: 1K words.
- The CPU processing speed is 12 times of XC3 series. Basic instructions: 0.02~0.05us, 6000 steps of
- instruction only need 0.1~0.2ms.
- 2-axis 200KHz pulse output.
- 16 points I/O model also can extend modules.

Powerful password function, protect the intellectual property right of customers.

Built-in high speed counter			
in	cremental mode	ABp	hase mode
count ID	max frequency	count ID	max frequency
2/3	80KHz/10KHz	2/3	50KHz/5KHz

XDM motion control type

I/O numbers: 24/32, 48/60

Support basic motion control instructions, 2-axis linkage motion, interpolation, follow-up, 4-axis separate pulse output, up to 10-axis pulse output, all the functions of XD series such as high speed count, interruption, PID control, the processing speed is 15 times of XC series, support SD card for data storage, with 1 serial port and 1 USB download port (high speed downloading, monitoring, speed up to 12M). All the models can connect 16 extension modules, 1 or 2 BD boards, 1 left extension module.

32-bit CPU.

- XDM provides 24/32/48/60 points I/O, is fit for various applications.
- USB port makes the downloading and
- unication very fast.
- Program capacity: 25K steps/data register
- ID: 70K words.

■ The CPU processing speed is 15 times of XC3 series, 6000 steps of instruction only need

- 0.1~0.2ms
- 4-axis to 10-axis 200KHz pulse output. Linear or circular interpolation instructions.
- Follow-up control instructions.
- Powerful password function, protect the
- intellectual property right of customers.

В	uilt-in high s	speed	counter
incremental mode		AB phase mod	
counter	max frequency	counter	max frequency
4/10	80KHz/10KHz	4/10	50KHz/5KHz

32-bit CPU.

- XDC provides 24/32/48/60 points I/O, is fit for various applications.
- Program capacity: 25K steps/data register ID: 70K words.

■ The CPU processing speed is 15 times of XC3 series, 6000 steps of instruction only need 0.1~0.2ms.

- 2-axis 200KHz pulse output.
- 1-axis to 20-axis fieldbus control.

Powerful password function, protect the intellectual property right of customers.

Built-in high speed counter

incremental mode		AB	phase mode
counter	max frequency	counter	max frequency
4	80KHz/10KHz	4	50KHz/5KHz

XDM series motion control structure diagram

Multi-axis independent control structure diagram

us RS-232 Modbus RS-485 XDM motion control

Multi-axis linkage motion control structure diagram

stacking, removing. Besides, it also includes counting and printing on the product. The packing machine can improve the production efficiency and reduce labor intensity, be suitable for mass production.

chemical, pesticide, cosmetics, etc. The machine has intelligent mechanical torque controlling, easy to adjusting and operation. The worker only needs to put the cap on the bottle, the caps will be auto-tightened by three groups of twisting wheels when the bottle is moving forward. It is fit for single production or attachment production.

at the same time. It used servo system to improve the precision, product consistency and production efficiency.

Casting machine

This machine can heat the pouring object, then control 2-axis or 3-axis path position through linear or circular interpolation function and pour the object onto the product for splicing and sealing.

Edge grinding machine

The machine can grind different size and shape of metal edge through linear and circular interpolation function. It contains the coarse grinding, fine grinding, polishing in one process. It has long service life and high efficiency, the shaping is ruled.

Glass cutting machine

This machine can control 2-axis or 3-axis path position through linear or circular interpolation function. The laser machine which is processing the organic glass has fast cutting speed, high precision, accurate positioning. It can produce artware, model toys, panel lens case, advertising light box, packing box, etc.

XDC series motion fieldbus controller

X-NET motion control fieldbus

XDC system control structure diagram

The manipulator is widely used in industry production, medical treatment, entertainment service, military, semiconductor manufacturing, space exploration. Although the shape is different, they have the same characteristics which is receiving instructions and point positioning in 2D or 3D space.

X-NET fieldbus control system

X-NET fieldbus

The fieldbus replaced the traditional Modbus and free format communication makes the system faster and reliable. The wiring also become easy. The nodes can up to 32 in single network, different network can communicate with each other

Network mode

Factory monitoring network, token structure, real-time multi-master station system. Multi-control, configuration or visual system can operate with each other on the same bus. Any node in the network has access right (token), no need external requests to send and receive data.

Communication speed and distance

The field bus communication speed and medium is related to the site environment The communication distance has limit as the field bus transferring signal is electricity. The distance is 100m at 3Mbps speed and using XINJE cable. The distance can be 1000m at 192kbps speed. The communication speed can up to 600bit~3Mbit

Three-servo packing machine

The packing machine can pack the product, the process includes filling, packing, sealing and before and after procedures such as cleaning, stacking, removing. Besides, it also includes counting and printing on the product. The packing machine can improve the production efficiency and reduce labor intensity, be suitable for mass production.

CNC lathe

CNC lathe is one of the automatic lathe installed with program control system which can process the special program and code then translate to digital code and input to CNC device. The CNC device will process the information and output various signals to control the lathe motion to produce the parts as the drawing. The CNC lathe is fit for complicated, accurate and different type of parts, is one type of flexible high-performance lathe

- XD2, XD3, XD5, XDM, XDC all support X-NET fieldbus.
- I/O numbers can up to 292 inputs and 280 outputs through the extension
- modules.
- X-NET fieldbus is token ring structure.
- Any node in the network who got the token can send message to other node.
- The speed can up to 3Mbps.

Shield

The shield cable of field bus X-NET must connect to the ground. If the high frequency is serious, it can multi-point-capacitance connect to the ground, cannot directly connect to the ground to avoid ground return current. The shield twin-core cable no need shield but it needs to shield under strong electromagnetism emission environment (automobile industry) to improve the compatibility of electromagnetism. The shielding line and foil must connect the both ends to the ground and cover with large area of shielding wiring to keep good conductivity. The data line must isolate with the high voltage line.

Isolation

The electrical signal of field bus X-NET is electrical isolated with the equipment. If the high voltage input in the network, all the equipment bus transceiver will damage. If there is no isolation, all the equipment circuits will damage.

Intelligent and autonomous

The fieldbus X-NET can process various parameters, running state and error information. It has high intelligence. It can auto-control the system, diagnosis the running status and send the error information to the control center, decrease the maintenance workload, improve the system reliability. Users can check the device running status, the maintenance information, find the error reason and solve the problem earlier. Finally it can save the cost.

Improve the accuracy and reliability

Compared with the analog signal, fieldbus device is intelligent, digitization. It improves the accuracy and reliability of whole system, reduces the transmission error. The system structure is simple, devices and wiring decreased, field meter function enhanced, signal transmission decreased. As the device standardization and function modularization, the system design and rebuilding is easy.

Powerful system expansion

The fieldbus can auto-identify the device reduction or addition, no need to connect new cable and cut the power supply.

Open system

XD series PLC, TN series HMI, DS3E and DS5 series servo drive and frequency inverter have fieldbus X-NET function which can meet most customers' requirements. XINJE company will cooperate with other instrument manufacturers, different devices can interchange information. XINJE products can match more products.

More communication stations

There can be 127 station numbers in the field bus X-NET system.

Save the installation cost

The field bus wiring is very simple. One pair of twisted pair cable can connect multi-devices, save the cables, terminals, slot box, bridges, decrease the workload of wiring design and joint proofreading. It saves the installation and maintenance cost. The system structure is simple, support linear and ring topology, save the time of project design, drafting, cable laying and hardware manage files.

Cable option

The transmission is affected by electromagnetic environment. XINJE cable is shield twin-core or optical fiber which can reach the standard speed and distance. (0.3mm2 and larger multi-strand copper shielded wire is recommended)

Connector

PLC terminal (A, B), extension BD board XD-NE-BD, XD-NO-BD make the connection faster, improve the working efficiency, easy to maintenance.

Terminal matching

The field bus X-NET has reflection phenomenon just like all the electromagnetic signal. Both ends of bus network segment must use resistor (120Ω) to absorb the radiation, make the correct voltage and ensure the communication.

Outstanding cost performance

Users have to spend lots of money for the fieldbus project in nowadays industrial control industry. The XINJE products all have fieldbus X-NET inside, it no needs extra costs. It will not limit by product brand.

Flexible network topology

Support various network topology structures including star, line, star and line integrated, ring.

the ring topology

Multi-network structure

Integrated network structure

X-NET fieldbus

XINJE XD all series of PLC support X-NET fieldbus, which has the features of intelligent, digital and strong stability. The max speed can up to 3M, the wiring and design is easy, reconsitution is simple.

X-NET motion fieldbus

XINJE XD all series of PLC support X-NET motion fieldbus, which can high speed connect servo system, be fit for multi-axis control, high speed and complicated motion applications. The max axis can up to 20, the max speed can up to 3Mbps.

MODBUS

Support standard Modbus serial port communication, easy to connect other brand of products. It contains RS232, RS485 and free format communication which can be selected as actual applications.

Support Modbus-TCP protocol, use together with XC series PLC to connect automation system with GPRS or GSM network. It is fit for distributed system and remote monitoring.

GPRS

WIFI/433M

WIFI provides the wifi network that other nodes can access and high-speed wireless monitor the device in it. 433M means decreasing the frequency to improve the penetration and tranferring distance, get better wireless communication effect.

MODBUS-TCP

Support Modbus-TCP protocol, the automation devices connect to each other via the Ethernet. It has better communication performance and makes a widely range of open network.

NEW XD/EPPro edit tool

Support XD all series of products

• XD/EPPro software is suitable for XD, XE series PLC, make PLC program, configure the network module. extension module, extension BD and left extension module

PLC Config	#1 XD/E-E16X16Y	Select: XD/E-E16X16Y	✓ Cancel	
EQ ED Module	#2 no module #3 no module	Parameter	Value	^
	#4 no module	10-13 Filtering time(ms)	10	
	#5 no module #5 no module	14-17 Filtering time(ms)	10	
- LO LO	=7 no module	10-13 Filtering time(ms)	10	
-Img Pulse	#8 no module #9 no module #10 no module #11 no module #12 no module #13 no module #14 no module	24-27 Filtering time(ms)	10	
		10 Logio	positive logic	
		Il logie	positive logic	
#12 no module #13 no module #15 no module #15 no module		12 logic	positive logic	
		#14 no module IS logic	X3 logic	positive logic
	#15 no module	14 logic	positive logic	
	X:10000-10017, Y:10000-10017		-	

Panel configuration

• Easy to write the complicated instruction ► XD/EPPro software provides easy editing platform for the complicated instructions including PID, 100-segment high speed counter interruption, electronic cam and so on.

• Easy to configure the pulse instruction XD/EPPro software has PLSR pulse instruction configuration interface which can configure all the pulse functions.

Enhanced password function

• The password can block the program uploading,

protect the intellectual property right of user. The

program damage.

PLC Config PLC Sent PLC

password is added to the program downloading to avoid

OK Cancel

tata start address:	00	user parans address	D100	system parans.	K1	output	YU		
node.	relative ~	stat execute section count.	0	Config					
Add Delete	Upwards D	ownwards							
								lines	_
	frequence.	pulse count	-	vait condition		rep	ster	register	1
	frequence	pulse roust		vait condition		rep	iter	repite	

Powerful programming language

• Support ladder chart and instruction, the two modes can switch to each other

•Support C programming in XD/EPPro, no need to use C programming software

XD/EPPro serial port

• Can configure the serial port from COM1 to COM256 Support Modbus-RTU and Modbus-ASCII protocol

• Support free format communication

Program capacity calculation

• Programmer can know the program capacity accurately.

• C library contains more C instructions which can be called directly.

• new function advanced save can encrypt the

File Edit Search View O

) New Project Ctrl+N Copen Project **Close Project** Save Project Ctrl+S

Save Project As

Advanced Save

• pulse configuration guide

Each yels paraties

Sates: the project tree it evittem in the ML Palse instruction RIS, FISE 78

Prev Net DK Care

► The guide will help user to set the pulse

program notes.

1

parameters.

Comor paravelar - Rod data - Nale set deares - Rod data -- Nale set deares cargo - Rod data -Gard data -- Garding wheel - Config upon - Config u

C · S 🔜 🭳 🔍 🗖 🕼 😫

Rich downloading function

• The data will not be reset, I/O will not be OFF when downloading online, the PLC will auto-run after downloading. User can choose the downloading data type.

XD2 series PLC

Basic small PLC

■ 7 inputs, 8 outputs 2 channels 200KHz high speed pulse output Faster processing speed

Cannot support extension module, BD and ED

model				speci	ificatior	۱					
XD2-16R-E	- <u>AC</u> - 🔋	a (RS232 XXXX	(₿>>		. 131		<mark>></mark> 20	≯ 6	fieldbus XNET
XD2-16R-C	- <u>DC</u> - 🖁	a (R\$485	RS232	€>		_ 13		<mark>></mark> 20	× 6	fieldbus XNET
XD2-16T-E	<u>–AC</u> – ⁸	a (RS232	✑		. 13	12 ,	<mark>></mark> 20	≯6	fieldbus XNET
XD2-16T-C	_ DC _ 🔋	a (R\$485	RS232	()≫		_ 13	12 ,	<mark>7</mark> 20	× 6	fieldbus XNET
AC power supply	input	🕞 trans	sistor output 🗙	C RS232	🔖 NPN	. 🖪	pulse inpu	t (10	right exten	sion module	fieldbus XNET X-NE
-DC DC power supply	output	📀 relay	/ output 🕺	🐯 RS485	😰 PNP		pulse outp	ut 1	left extensi	on module	XNET X-N
BD board	real-time clock	🕪 tran:	sistor and relay	output	<mark>≸</mark> 20 time	r interru	ption 🄀	⁰ externa	al interruptio	on	

XD3 series PLC

Econom

ical small PLC	 max I/O numbers are 380 2 channels 200KHz high sp 16 points model cannot sup
	Faster instruction processi
	Rich extension functions

model								spe	cificati	on						
XD3-16R-E			â	\odot	RS485 XXXX	RS232	(₿>		, 131			≝ <mark>10</mark>	1	<mark>></mark> 20	} 6	fieldbus XNET
XD3-16R-C	-00-			\odot	RS485 XXXX	RS232	(₿>		_ 131			≝ <mark>10</mark>	1	<mark>></mark> 20	<mark>≯</mark> 6	fieldbus XNET
XD3-16T-E		8	8	\odot	RS485	RS232	☞		<u>_131</u>	[2]		∭ <mark>10</mark>	1	<mark>></mark> 20	} 6	fieldbus XNET
XD3-16T-C	-00-	8	8	\odot	RS485 XXXX	RS232	☞		<u>_131</u>	[2] ,		∭ <mark>10</mark>	1	<mark>></mark> 20	<mark>≯</mark> 6	fieldbus XNET
XD3-16RT-E		(3)	â	\odot	RS485	RS232	()>		_131	[2]		¥ 10	1	<mark>></mark> 20	<mark>≯</mark> 6	fieldbus XNET
XD3-16RT-C	-00-	I ▼	8	\odot	RS485	RS232	<		_ []	[2]		¥10	1	<mark>7</mark> 20	≫ 6	fieldbus XNET
XD3-16PR-E		8	8	\odot	RS485	RS232	0>		-131			¥ <mark>10</mark>	1	<mark>></mark> 20) × 6	fieldbus XNET
XD3-16PR-C	-00-	8 V	8	\odot	RS485	RS232 XXXX	☞	ø	_ 131			∭ <mark>10</mark>	1	7 20) × 6	fieldbus XNET
XD3-16PT-E	- <u>AC</u> -	8 ▼	8	\odot	RS485 XXXX	RS232	☞	ø	_ []			∭ <mark>10</mark>	1	<mark>7</mark> 20) × 6	fieldbus XNET
XD3-16PT-C	-00-	8 1	8	\odot	RS485	RS232 XXXX	_>		_ []]			≝ <mark>10</mark>	1	7 20	× 6	fieldbus XNET
XD3-16PRT-E	- <u>AC</u> -	8 1	8	\odot	RS485	RS232	0>	ø	, 13			≝ <mark>10</mark>	1	<mark>7</mark> 20) × 6	fieldbus XNET
XD3-16PRT-C	-00-	8	8	\odot	RS485	RS232	()>		-131			∭ <mark>10</mark>	1	<mark>></mark> 20	× 6	fieldbus XNET
XD3-24R-E		14 V	10	\odot	RS485	RS232	⊗		_ 131		1	∭ <mark>10</mark>	1	7 20	× 10	fieldbus XNET
XD3-24R-C	-00-	14 V	10	\odot	RS485	RS232	☞		<u>_</u> []		1	∭ <mark>10</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
XD3-24T-E		14 V	10	\odot	RS485	RS232	_>		_ []]		1	≝ <mark>10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-24T-C	-00-	14 V	10	\odot	RS485	RS232	()>		<u>_131</u>		1	≝ <mark>10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-24RT-E		14 †	10	\odot	RS485	RS232	()>		<u>_131</u>	[2] ,	1	¥10	1	<mark>}</mark> 20	× 10	fieldbus XNET
XD3-24RT-C	-00-	14	10	\odot	RS485 XXXX	RS232	<		_131	[2] ,	1	∭ <mark>10</mark>	1	<mark>></mark> 20	¥ 10	fieldbus XNET
XD3-24PR-E	- <u>AC</u> -	14 V	10	\odot	RS485	RS232	ഔ	ø	<u>_</u> []		1	≝ <mark>10</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
XD3-24PR-C	-00-	14 V	10	\odot	RS485	RS232	☞		_ []]		1	¥ <mark>10</mark>	1	7 20	X 10	fieldbus XNET
XD3-24PT-E		14 V	10	\odot	RS485	RS232	☞		<u>_</u> []		1	¥ <mark>10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-24PT-C	-00-	14 V	10	\odot	RS485	RS232	☞		<u>_131</u>		1	∭ <mark>10</mark>	1	7 20	X 10	fieldbus XNET
XD3-24PRT-E		14 V	10	\odot	RS485	RS232	()>		_ []]		1	∭ <mark>10</mark>	1	<mark>7</mark> 20	X 10	fieldbus XNET
XD3-24PRT-C	-00-	14 V	10	\odot	RS485	RS232 XXXX	()>	ø	_ []]		1	≝ <mark>10</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
XD3-32R-E		18 V	14	\odot	RS485	RS232 XXXX	⊗⇒		_ 13		1	∭ <mark>10</mark>	1	7 20	X 10	fieldbus XNET
XD3-32R-C	-00-	18 V	14	\odot	RS485 XXXX	RS232	☞		_ 13		1	≝ <mark>10</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
XD3-32T-E	- <u>AC</u> -	18	14	\odot	RS485	RS232	()>				1	≝ <mark>10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-32T-C	-00-	18	14	\odot	RS485 XXXX	RS232	☞		, 🛐	[2] ,	1	≝ <mark>10</mark>	1	<mark>7</mark> 20	× 10	fieldbus XNET
XD3-32RT-E		18	4 14	\odot	RS485 XXXX	RS232	0>		, 🛐	[2] _	1	≝ <mark>10</mark>	1	<mark>></mark> 20	× 10	fieldbus XNET
XD3-32RT-C	-00-	18	4 14	\odot	RS485 XXXX	RS232	0>		_ 131	[2] _	1	∭ <mark>10</mark>	1	<mark>7</mark> 20	× 10	fieldbus XNET
XD3-32PR-E		18 V	14	\odot	RS485	RS232	8>	ø	_ 131		1	≝ <mark>10</mark>	1	<mark>></mark> 20	× 10	fieldbus XNET
XD3-32PR-C	-00-	18	14	\odot	RS485 XXXX	RS232	(€>>	ø	, 🛐		1	∭ <mark>10</mark>	1	<mark>7</mark> 20	× 10	fieldbus XNET
XD3-32PT-E	- <u>AC</u> -	18	4	\odot	RS485	RS232	☞		_ []		1	≝ <mark>10</mark>	1	<mark>/</mark> 20	× 10	fieldbus XNET

better

Good compatibility

XD/EPPro software.

• XC series PLC program can be

transformed to XD program through

convert XC project file to XD project file?

OK Cancel

ET fieldbus NET motion fieldbus

peed pulse output pport right extension module ing speed

model							s	peci	fication							
XD3-32PT-C	DC	18	14	\odot	RS485	RS232 XXXX	⊘⇒		. 13	121 ,	1	∰ <mark>10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-32PRT-E		18	14	\odot	RS485 XXXX	RS232	()>		. 131		1	ŝ <mark>10</mark>	1	<mark>⁄</mark> 20	X 10	fieldbus XNET
XD3-32PRT-C		18 V	14	\odot	RS485	RS232 XXXX	()>		. 131		1	≋ <mark>10</mark>	1	<mark>⁄</mark> 20	X 10	fieldbus XNET
XD3-48R-E	-AC-	28	20	\odot	RS485	RS232	ጮ		,]]]		2	∭ <mark>10</mark>	1	7 20	X 10	fieldbus XNET
XD3-48R-C	_ <mark>DC</mark> _	28	20	\odot	RS485	RS232	₿⇒		, 🖪		2	<mark>≋10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-48T-E		28 V	20	\odot	RS485 XXXX	RS232 XXXX	☞		. 🖪	121,-	2	<mark>≋10</mark>	1	7 20	X 10	fieldbus XNET
XD3-48T-C		28	20	\odot	RS485	RS232	ତ⇒		. [3]	121 ,	2	∭ <mark>10</mark>	1	7 20	× 10	fieldbus XNET
XD3-48RT-E	-AC-	28 V	20	\odot	RS485	RS232	()>		. [3]	121 ,	2	∭ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-48RT-C	DC	28	20	\odot	RS485	RS232 XXXX	<		. [3]	121,-	2	∭ <mark>10</mark>	1	7 20	X 10	fieldbus XNET
XD3-48PR-E		28	20	\odot	RS485	RS232	ጮ		. [3]		2	<mark>≋10</mark>	1	7 20	X 10	fieldbus XNET
XD3-48PR-C		28	20	\odot	RS485	RS232 XXXX	₿⇒		. 131		2	∭ <mark>10</mark>	1	7 20	X 10	fieldbus XNET
XD3-48PT-E	- <u>AC</u>	28	20	\odot	RS485 XXXX	RS232	()>		. 131		2	<mark>≋10</mark>	1	7 20	X 10	fieldbus XNET
XD3-48PT-C		28	20	\odot	RS485	RS232	()>		. [3]		2	∭ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-48PRT-E		28	20	\odot	RS485 XXXX	RS232	()>		. [3]		2	∭ <mark>10</mark>	1	2 0	× 10	fieldbus XNET
XD3-48PRT-C		28	20	\odot	RS485	RS232	()>		_ [3]		2	∭ <mark>10</mark>	1	5 20	X 10	fieldbus XNET
XD3-60R-E		36 V	24	\odot	RS485	RS232	₿⇒		. 131		2	<mark>≋10</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD3-60R-C		36	24	\odot	RS485	RS232	ጮ		. 131		2	<mark>≋10</mark>	1	5 20	X 10	fieldbus XNET
XD3-60T-E		36	24	\odot	RS485	RS232	ତ⇒		.		2	≋ 10	1	2 0	× 10	fieldbus XNET
XD3-60T-C	- <u>DC</u>	36) V	24	\odot	RS485 XXXX	RS232 XXXX	≫		. [3]		2	<mark>≋10</mark>	1	2 0	X 10	fieldbus XNET
XD3-60RT-E		36) V	24	\odot	RS485	RS232	(0>		.		2	∰ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-60RT-C	- <u>DC</u>	36 V	24	\odot	RS485	RS232 XXXX	()>		_ []		2	∰ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-60PR-E	- <mark>AC</mark>	36	24	\odot	RS485 XXXX	RS232 XXXX	ഭ⇒	\mathbf{b}	. 131		2	<mark>≋10</mark>	1	<mark>7</mark> 20	X 10	fieldbus XNET
XD3-60PR-C		36 V	24	\odot	RS485 XXXX	RS232 XXXX	ഭ⇒	\diamond	_ []]		2	∰ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-60PT-E		36 V	24	\odot	RS485 XXXX	RS232 XXXX	☞	ø	_ []]		2	≌ <mark>10</mark>	1	5 20	X 10	fieldbus XNET
XD3-60PT-C	DC	36 V	24	\odot	RS485	RS232	☞		_ [3]		2	∰ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-60PRT-E	-AC-	36 V	24	\odot	RS485 XXXX	RS232	()>	\diamond	_ []]		2	ŝ <mark>10</mark>	1	2 0	× 10	fieldbus XNET
XD3-60PRT-C		36 V	24	\odot	RS485	RS232	()>	\mathbf{k}	_ []		2	∰ <mark>10</mark>	1	2 0	X 10	fieldbus XNET
XD3-20T3TC-E	- <mark>AC</mark>	8 ▼	12	\odot		RS232	☞		. [2]					2 0	× 6	
XD3-20T3TC-E(S)		8	12	\odot	RS485 XXXX	RS232 XXXX	☞		. [2]					> 20	× 6	
AC power supply	input	t	()~ (>	transisto relay out	routput 🗙 put 🗙	8232 RS232 RS232 RS485	🚯 NPN 😰 PNP	.C	pulse input pulse output	i <mark>g10</mark> righ 1∭ left o	t extension extension	n module module	fieldbus XNET X-N motion fieldbu XNET X-I	IET fieldbus ^{us} NET motion	fieldbus	
BD board	🕒 real-ti	ime clock	>	transisto	r and relay	output	≸ 20 time	er interru	uption 🔀10	external int	erruption					

XDM series PLC

Powerful motion control PLC

- Max I/O numbers are 572
 4/10 channels 200KHz high speed pulse output
 Support 16 right extension modules
 Support linear, circular interpolation
 Faster processing speed

model					s	peci	ficatio	n						
XDM-24T4-E	- <u>AC</u> - 14	â 🤅	RS485	RS232 XXXX	☞		.		1	∭ <mark>16</mark>	1	2 0	¥ 10	fieldbus XNET
XDM-24T4-C	-00- 🙀	a (RS485	RS232	≫		.		1	∭ <mark>16</mark>	1	5 20	× 10	fieldbus XNET
XDM-32T4-E	- <u>AC</u> - 😗	📩 🤅	RS485	RS232 XXXX	☞		.		1	∭ <mark>16</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
XDM-32T4-C	-00- 🕴	📩 🤆	RS485	RS232 XXXX	∽		.		1	[■] 16	1	* 20	X 10	fieldbus XNET
XDM-60T4-E	- <u>AC</u> - 😵	🛓 🤆	RS485	RS232 XXXX	☞		.		2	∭ <mark>16</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
XDM-60T4-C	-00- 🕴	a () RS485	RS232 XXXX	()>	痧	.		2	∭ <mark>16</mark>	1	2 0	X 10	fieldbus XNET
XDM-60T10-E	-AC- 😗	🛓 🤅	R\$485	RS232	;>>		. 100		2	∭ <mark>16</mark>	1	2 0	X 10	fieldbus XNET
XDM-60T10-C	- DC - 🕴	🛓 🤆	RS485	RS232	ົ≫	痧	. [11]		2	∭ <mark>16</mark>	1	<mark>/</mark> 20	X 10	fieldbus XNET
AC power supply	input	🕞 trans	stor output 🔀	32 RS232	救 npn	.0	pulse inp	ut	ight exter	nsion module	e XNE	dbus T X-NET fi	eldbus	
DC power supply	output	🔥 relay	output 🔀	🗙 RS485	😰 PNP	[2] ,	pulse out	put 1 🗃 l	eft extens	ion module	XNE	T X-NET r	notion fieldb	us
BD board	🕒 real-time clock	🔅 trans	stor and relay o	utput	<mark>≯</mark> 20 time	er interru	uption 🄰	10 external	l interrupt	ion				

XD5 series PLC

XD3 soft component updated PLC	 Max I/O numbers are 572 2 to 6 channels 200KHz hig Large capacity of program Faster processing speed Rich extension function
--------------------------------	--

model		_						spe	cificat	ion _						
XD5-24R-E	- <u>AC</u> -	14	10	\odot	RS485	RS232 XXXX	®>				1	∭ 16	1	5 20	¥ 10	fieldbus XNET
XD5-24R-C	- <u>DC</u> -	14 V	10	\odot	RS485	RS232 XXXX	₿⇒				1	∭ 16	1	<mark>></mark> 20	X 10	fieldbus XNET
XD5-24T-E	- <u>AC</u> -	14 T	10	\odot	RS485	RS232	ᢙ		, 🖪		1	∭ <mark>16</mark>	1	<mark>></mark> 20	¥ 10	fieldbus XNET
XD5-24T4-E	- <u>AC</u> -	14 †	10	\odot	RS485	RS232 XXXX	☞		.	14 ,	1	<mark>∭16</mark>	1	<mark>></mark> 20	X 10	fieldbus XNET
XD5-24T-C	_ <u>DC</u> _	14	10	\odot	RS485	RS232	☞		_ 131		1	∭ 16	1	2 0	× 10	fieldbus XNET
XD5-24T4-C	- <u>DC</u> -	14 T	10	\odot	RS485 XXXX	RS232	()>		,	14 ,_	1	<mark>≋1</mark> 6	1	<mark>⁄</mark> 20	× 10	fieldbus XNET
XD5-32R-E	-AC-	18 V	14	\odot	RS485	RS232	(₿>		. 🖪		1	<mark>≋1</mark> 6	1	<mark>}</mark> 20	X 10	fieldbus XNET
XD5-32R-C	- <u>DC</u> -	18 V	14	\odot	RS485 XXXX	RS232	⊗		, 13		1	≋16	1	2 0	X 10	fieldbus XNET
XD5-32T-E	- <u>AC</u> -	18	14	\odot	RS485 XXXX	RS232	☞		, 13	121 ,	1	≋16	1	2 0	X 10	fieldbus XNET
XD5-32T4-E	- <u>AC</u> -	18	14	\odot	RS485 XXXX	RS232	☞		.	14 ,	1	≋ 16	1	2 0	× 10	fieldbus XNET
XD5-32T-C	- <u>DC</u> -	18 †	14	\odot	RS485 XXXX	RS232 XXXX	☞		, 13	12 ,_	1	∭ <mark>16</mark>	1	2 0	X 10	fieldbus XNET
XD5-32T4-C	- DC -	18 V	14	\odot	RS485 XXXX	RS232	☞		,		1	<mark>∭16</mark>	1	<mark>⁄</mark> 20	<mark>) ×</mark> 10	fieldbus XNET
XD5-48R-E	<u>– AC</u> –	28	20	\odot	RS485	RS232	(₿>		, 13		2	<mark>≋16</mark>	1	<mark>/</mark> 20	× 10	fieldbus XNET
XD5-48R-C		28	20	\odot	RS485 XXXX	RS232	(₿>		, 🖪		2	≋ 16	1	2 0	× 10	fieldbus XNET
XD5-48T-E		28	20	\odot	RS485 XXXX	RS232	ତ⇒		, 🖪		2	≋ 16	1	2 0	× 10	fieldbus XNET
XD5-48T-C	DC	28 V	20	\odot	RS485 XXXX	RS232	ତ⇒		, 🖪		2	<mark>≋16</mark>	1	<mark>></mark> 20	× 10	fieldbus XNET
XD5-48T6-E		28 V	20	\odot	RS485 XXXX	RS232	≫		, 61	rei,	2	≋ 16	1	<mark>></mark> 20	<mark>) ×</mark> 10	fieldbus XNET
XD5-48T6-C		28 V	20	\odot	RS485 XXXX	RS232	ᢙ		, 61		2	<mark>≋1</mark> 6	1	<mark>></mark> 20	× 10	fieldbus XNET
XD5-60R-E	AC-	36 V	24	\odot	RS485 XXXX	RS232	®⇒		_]]]		2	≋ 16	1	2 0	<mark>) ×</mark> 10	fieldbus XNET
XD5-60R-C	DC	36 V	24	\odot	RS485 XXXX	RS232	₿		, 13		2	<mark>≋</mark> 16	1	<mark>></mark> 20	<mark>) ×</mark> 10	fieldbus XNET
XD5-60T-E	AC-	36 V	24	\odot	RS485 XXXX	RS232 XXXX	☞		, 13		2	<mark>≋</mark> 16	1	<mark>></mark> 20	<mark>) ×</mark> 10	fieldbus XNET
XD5-60T-C	DC	36 V	24	\odot	RS485 XXXX	RS232 XXXX	☞		_ 13		2	<mark>≋16</mark>	1	<mark>></mark> 20	× 10	fieldbus XNET
XD5-60T6-E	-AC-	36	24	\odot	RS485 XXXX	RS232 XXXX	☞		, [1]	rei,	2	<mark>≋16</mark>	1	2 0	X 10	fieldbus XNET
XD5-60T6-C	-DC-	36 V	24	\odot	RS485 XXXX	RS232	☞		_ [6]		2	≋ 16	1	2 20	× 10	fieldbus XNET
AC power supply	input input	ut time clock	© ©	 transisto relay ou transisto 	proutput	8232 RS232 RS485 RS485 y output	∲ NР ∲ РN 7 20 t	'N 🚛	pulse i pulse c	nput 👔 🛛 putput 🚺	right exte left exter al interrup	ension mod nsion modu otion	dule XN Ile XN	fieldbus IET X-NET tion fieldbus IET X-NE	fieldbus T motion field	bus

XDC series PLC

Powerful motion fieldbus PLC	 Max I/O numbers are 572 2 channels 200KHz high speed p Support 16 right extension modul Support motion fieldbus X-NET Faster processing speed
------------------------------	---

	model								spec	ificati	on							
	XDC-24T-E	_ <u>_AC</u>	14	10	\odot	RS485	RS232	ᢙ		.		1	ĝ <mark>16</mark>	1	<mark>⁄</mark> 20	X 10	fieldbus XNET	motion fieldbus XNET
	XDC-24T-C	_ <u>_</u>	14	10	\odot	RS485	RS232	ᢙ		<u>, 14</u>		1	≋ <mark>16</mark>	1	<mark>/</mark> 20	× 10	fieldbus XNET	motion fieldbus XNET
	XDC-32T-E	- <u>AC</u> -	18	14	\odot	RS485	RS232	ኈ	\$.		1	≋ 16	1	<mark>></mark> 20	X 10	fieldbus XNET	motion fieldbus XNET
	XDC-32T-C	- <u>DC</u> -	18	14	\odot	RS485	RS232	ᢙ		. 🗗		1	≋ 16	1	<mark>/</mark> 20	¥ 10	fieldbus XNET	motion fieldbus XNET
	XDC-60T-E	-AC-	36	24	\odot	RS485	RS232	☞		.		2	≋ 16	1	<mark>></mark> 20	× 10	fieldbus XNET	motion fieldbus XNET
	XDC-60T-C	_ <mark>_DC</mark>	36 V	24	\odot	RS485	RS232	ᢙ		.		2	≋ 16	1	<mark>7</mark> 20	× 10	fieldbus XNET	motion fieldbus XNET
_	AC power supply	input input	ut time cloc	• •	 transist relay ou transist 	or output 🛣 tput 🛣 or and relay	2232 RS232 5485 RS485 output	ጭ NPM ∳PNF ₹20 ti	N 🗐	pulse ir pulse o rruption	aput 📲 🛛 utput 🚺	right ex left exte nal interr	tension mod Insion modu uption	ule XM le XM	fieldbus NET X-NE ⁻ tion fieldbus NET X-NE	T fieldbus	fieldbus	

572 Hz high speed pulse output gram and soft component

15kbbbebi	
TITTT	

ulse output les

Special function extension BD board

left extension module

item	specification
using environment	no corrosive gas
environment temperature	0°C ~ 60°C
storage temperature	-20~70°C
environment humidity	5~95%RH
storage humidity	5~95%RH
installation	fix with M3 screw or install on the DIN46277 (width 35mm) rail directly
dimension.	25mm×100mm×89.0mm
aimensión	18mm×100mm×89.0mm

XD series I/O extension module model list

right extension module the extension cable length can up to 1.5m

I/O extension

if the PLC main unit I/O numbers cannot meet the requirements, please use I/O extension module.

XD series I/O extension module specification		
item	specification	
using environment	no corrosive gas	
environment temperature	0°C ~ 60°C	
storage temperature	-20 ~ 70°C	
environment humidity	5~95%RH	
storage humidity	5~95%RH	
installation	fix with M3 screw or install on the DIN46277 (width 35mm) rail directly	
dimension	70.8mm×108mm×89.0mm 108.6mm×108mm×89.0mm	

model			
NPN input	PNP input	function	
XD-E8X	XD-E8PX	8 channels digital input, DC24V power supply	
XD-E8YR	-	8 channels relay output, DC24V power supply	
XD-E8YT	-	8 channels transistor output, DC24V power supply	
XD-E8X8YR	XD-E8PX8YR	8 channels digital input, 8 channels relay output, DC24V power supply	
XD-E8X8YT	XD-E8PX8YT	8 channels digital input, 8 channels transistor output, DC24V power supply	
XD-E16X	XD-E16PX	16 channels digital input, DC24V power supply	
XD-E16YR	-	16 channels relay output, no need power supply	
XD-E16YT	-	16 channels transistor output, no need power supply	
XD-E16X16YR-E/C	XD-E16PX16YR-E/C	16 channels digital input, 16 channels relay output, AC220V or DC24V	
XD-E16X16YT-E/C	XD-E16PX16YT-E/C	16 channels digital input, 16 channels transistor output, AC220V or DC24V	
XD-E32YR-E/C		32 channels relay output, AC220V or DC24V	
XD-E32YT-E/C	-	32 channels transistor output, AC220V or DC24V	
XD-E32X-E/C	XD-E32PX-E/C	32 channels digital input, AC220V or DC24V	

Input extension module XD-E8X, XD-E8PX 8 input points Rated input voltage is DC24V Response time below 20ms External wiring mode is terminal The wiring method is same to PLC main unit The P in the model name means PNP input

output extension module

I/O extension module

XD-E8X8YR, XD-E8X8YT, XD-E8PX8YR, XD-E8PX8YT				
•				
and the local division of the local division	8 input points	Rated input voltage is DC24V		
	Response time below 20ms	The P in the model name means PNP input		
	8 output points	R: relay output T: transistor output		
	R response time below 10ms	T response time below 0.2ms		
FERENCE	R max load: resistance 3A, inductance 80VA	T max load: resistance 0.5A, inductance 12W80VA		
	External wiring mode is terminal	The wiring method is same to PLC main unit76		

analog extension module

transform the analog signal to digital or digital to analog, receive and process temperature sensor signal. analog extension module specification			
item	specification		
using environment	no corrosive gas		
environment temperature	℃ ~ 60°C		
storage temperature	-20 ~ 70°C		
environment humidity	5~95%RH		
storage humidity	5~95%RH		
installation	fix with M3 screw or install on the DIN46277 (width 35mm) rail directly		
dimension	63mm×108mm×89.0mm		

DA type

mixed type

	XD-E4AD2DA			
	4 input channels	2 output channels		
	Input voltage 0~5/0~10V	output voltage 0~5/0~10V		
		Input current 0~20/4~20mA	output current 0~20/4~20mA	
		Transforming speed 2ms/channel	Transforming speed 2ms/channel	
		Resolution 1/16383	Resolution 1/4096	
		Precision ±1%	Precision ±1%	
		Filter coefficient 0~255	Enable bit is added	
	1 to be be been to be	Enable bit is added		
			,	

	XD-E4AD2DA-B	
	4 input channels	2 output channels
	Input voltage 0~5/0~10V	output voltage 0~5/0~10V
	Input current 0~20/4~20mA	Transforming speed 2ms/channel
	Transforming speed 2ms/channel	Resolution 1/4096
	Resolution 1/16383	Precision ±1%
and the second se	Precision ±1%	Enable bit is added
Terener	Filter coefficient 0~255	
The factor is the second second	Enable bit is added	
		1

weighing extension module

transform the weighing signal to digital value

alog input range	DC -39.06 ~ 39.06mV
solution	1/16777216(24Bit)
egrated precision	±0.1%
nsformation speed	0~255 times/second
wer supply	DC24V±10%,100mA
nsor excitation power supply	5VDC/120mA, can connect 4 350Ω weighing sensor in parallel
tallation mode	fix with M3 screw or install on the DIN46277(width 35mm) rail directly
nension	63mm×108mm×89.0mm
ng environment	no corrosive gas
	℃ ~ 60°C
	5~95%

MA series remote extension module

MA series modules include digital input and output, analog input and output, temperature control. It uses RS485 port and based on Modbus protocol, can connect PLC, HMI, PLC&HMI integrated controller, and other devices supporting Modbus protocol. It is fit for temperature, flow, liquid level, pressure control, can extend up to 16 modules.

digital I/O

I/O extension module MA-nXnY		
model	notes	
MA-8X8YR	8 channels digital input, 8 channels digital output (relay output)	
MA-8X8YT	8 channels digital input, 8 channels digital output (transistor output)	
MA-16X	16 channels digital input	
MA-16YR	16 channels digital output (relay output)	
MA-16YT	16 channels digital output (transistor output)	

MA-16YR, MA-16YT			
	1.		
2222525	16 output points	R: relay output T: transistor output	
84874 22	The wiring method is same to PLC main unit	R max load: resistance 3A, inductance 80VA	
	External wiring mode is terminal	T response time below 0.2ms	
0424232 222251	R response time below 10ms	T max load: resistance 0.5A, inductance 12W80VA	

temperature control extension module

Pt100 thermal resistor or thermocouple temperature measurement, PID control inside.

Pt100 thermal resistor

analog extension module XD-E6PT-P general specification

item	specification
using environment	no corrosive gas
environment temperature	℃ ~ 0°C ~ 0°C
storage temperature	−20 ~ 70°C
environment humidity	5~95%RH
storage humidity	5~95%RH
installation	fix with M3 screw or install on the DIN46277(width 35mm) rail directly
dimension	63mm×108mm×89.0mm

analog extension module XD-E6PT-P general specification

item	specification
analog input	Pt100 thermal resistor
Temperature range	−100°C ~ 500°C
Digital output range	-1000~5000, 16-bit signed value, binary
Control precision	±0.5°C
Resolution	0.1°C
Integrated precision	1% (relative max value)
Transformation speed	20ms/channel
Power supply for analog	DC24V±10%, 50mA

XD-E6PT-P			
	6 temperature input channels	Control the heating and cooling	
	Self-study function	Optional sampling period	
	Temperature range -100~500°C	Control precision ±0.5°C	
	Resolution 0.1°C	Integrated precision ±1%	
	Channel transformation speed 20ms/channel		
Treesees			

TC thermocouple

analog extension module XD-E6TC-P general specification

item	specification
using environment	no corrosive gas
environment temperature	℃~60℃
storage temperature	-20 ~ 70°C
environment humidity	5~95%RH
storage humidity	5~95%RH
installation	fix with M3 screw or install on the DIN46277(width 35mm) rail directly
dimension	63mm×108mm×89.0mm

analog extension module XD-E6TC-P performance specification

item	specification		
analog input	thermocouple K, S, E, N, B, T, J, R		
Temperature range	24 0~1300°C (type K)		
Digital output range	25 0~13000, signed 16-bit value, binary		
Control precision	±0.5℃		
Resolution	0.1°C		
Integrated precision	1% (relative max value)		
Transformation speed 20ms/channel			
Power supply for analog DC24V±10%, 50mA			

XD-E6TCA-P			
	6 temperature input channels	Control the heating and cooling	
	Self-study function	Optional sampling period	
	Temperature range 0~1300°C	Control precision ±0.5°C	
	Resolution 0.1°C	Integrated precision ±1%	
	Channel transformation speed 20ms/channel		

Treeten

XD-E2WT-A

2 weighing channels		
AD transformation speed 0~255 times/second		
Internal resolution 1/16777216		
Display resolution 1/20000		
Nonlinear error 0.01% F.S		
Time drift 0.005% F.S		
Integrated precision ±0.1%		

annels
ation speed 0~255 times/second
tion 1/16777216
tion 1/20000
r 0.01% F.S
5% F.S
cision ±0.1%

XD-E1WT-A

AD transformation speed 0~255 times/second		
Internal resolution 1/16777216		
Display resolution 1/20000		
Nonlinear error 0.01% F.S		
Time drift 0.005% F.S		

Integrated precision ±0.1%

digital I/O module general specification

item	specification		
input power supply voltage	DC24V±10%		
Using environment	no corrosive gas		
Environment temperature	℃ ~ 0°C ~ 0°C		
Environment humidity	5~95%		
Installation	fix with M3 screw or install on the DIN46277(width 35mm) rail directly		
Dimension	63mm×102mm×73.3mm		

input extension module

1	
	16 input points
Ì	Rated input voltage DC24V
ľ	Response time below 20ms
ľ	External wiring mode is terminal
Ì	The wiring method is same to PLC main unit
	The P in the model name means PNP input

I/O extension module

MA-8X8YR, MA-8PX8YR, MA-8X8YT, MA-8PX8YT

8 input points	R response time below 10ms
Rated input voltage DC24V	T response time below 0.2ms
Response time below 20ms	R max load: resistance 3A, inductance 80VA
The P in the model name means PNP input	T max load: resistance 0.5A, inductance 12W80VA
8 output points	External wiring mode is terminal
R: relay output T: transistor output	The wiring method is same to PLC main unit

analog I/O

analog input module MA-nAD model notes MA-4AD 4 channels, 12-bit high precision analog input (voltage/current), each channe MA-8AD-A 8 channels, 12-bit high precision analog input (current), each channel has PID MA-8AD-V 8 channels, 12-bit high precision analog input (voltage), each channel has PID

analog	1/0	modu	le MA	\-nADr	nDA

has PID function	MA-2DA	2 channels, 10-bit high precision analog output (voltage/current)
function	MA-4DA	4 channels, 10-bit high precision analog output (voltage/current)
) function		

analog output module MA-nDA

analog I/O mod	dule MA-nADmDA
model	notes
MA-4AD2DA	4 channels, 12-bit high precision analog input (voltage/current), each channel has PID function; 2 channels, 10-bit high precision analog output (voltage/current)
AD type	

temperature control

Resolution 1/1024

Precision ±0.8%

PT100 therma	l resistor		TC thermoco	uple	
	MA-6PT-P			MA-6TCA-P	
	6 temperature input channels Self-study function Temperature range -100-50 ^{0%C} Resolution 0.1*C Transformation speed 20ms/channel	Heating and cooling control Optional sampling period Control precision ±0.1°C Integrated precision ±0.8%		6 temperature input channels Self-study function Temperature range 0-1300°C Resolution 0.1°C Transformation speed 20ms/channel	Heating and cooling control Optional sampling period Control precision ±0.1 ⁴ C Integrated precision ±0.8%

Resolution 1/1024

Precision ±0.8%

PARARRE LELEEL

XD series product specifications

General specification of basic unit

ltem	Specification
Insulation voltage	Up DC500V 2Mohm
anti-noise	Noise voltage 1000 Vp-p 1us pulse 1 minute
Air	No corrosive and flammable gas
Environment temperature	0°C~60°C
Environment humidity	5%RH~95%RH (no condensation)
Com 1	RS232, connect to upper device, HMI to debug and programming
Com 2	RS485, connect to smart meter and VFD
Installation	fix with M3 screw or install on the rail directly
Ground	The third ground (cannot connect the ground with high voltage system

- All the basic units have com1 for programming and debug.
- The rail specification is DIN46277, the width is 35mm.
- The ground is better to use single ground or sharing ground, cannot use public ground.

Resolution 1/4096

Precision ±0.8%

Resolution 1/1024

Precision ±0.8%

lte	ems	Specifications					
Program execution mode		scan round mode					
Program mode		Instructions, ladder chart, C language					
Processing speed		0.05us					
Power off retentive		FlashROM and Li-battery (3V button battery)					
Users' program capacity**		256KB					
Total I/O numbers		16 points					
I/O points ^{®2}	Input numbers	8 points X0~X	7				
	Output numbers	8 points Y0~Y	7				
Internal Coils(X) ^{#3}		1280 points: X	0~X77, X10000~X11777, X20000~X20277				
Internal Coils(Y) 84		1280 points: Y	0~Y77, Y10000~Y11777, Y20000~Y20277				
Internal Coils(M, HM)		11008 points	M0~M7999 [HM0~HM959] **				
			For Special Use ** SM0~SM2047				
Procedure(S)		1152 points	S0~S1023 [HS0~HS127]				
	points	672 points	T0~T575 [HT0~HT95]				
		100mS timer: set time 0.1~3276.7s					
Timer(T)	Specification	10mS timer: set time 0.01~327.67s					
		1mS timer: set time 0.001~32.767s					
	points	672 points	C0~C575 [HC0~HC95]				
Counter(T)	Specification	16 bits counte	r: set value K0~32,767				
	Specification	32 bits counte	r: set value -2147483648~+2147483647				
Data Registe	(D)	110.48 wordo	D0~D7999 [HD0~HD999] .				
Data Registe	si(D)	11048 Wolds	For Special Use SD0~SD2047				
		5120 words	FD0~FD5119				
FlashROM F	tegister (FD)	5120 Wolds	For Special Use SFD0~SFD1999				
High speed	processing ability	High speed co	ounter, pulse output, external interruption				
Password P	rotection	6 bits ASCII					
Self-diagnos	se Function	Power on self-	check, monitor timer, grammar check				

1: The users' program capacity means the maximum program capacity when encrypted downloading.
 2: UO points mean terminal number that users can connect from outside.
 3: X stands for the internal input relays and can be used as middle relay when input points are exceeded.
 4: Y stands for the internal output relays and can be used as middle relay when output points are exceeded.
 5: [] means the default power off retentive area, this area can't be changed.

*6: For special use means special usage registers that are occupied by system, can't be applied for other usage

XD5 series basic unit performance specifications

lt	ems	Specifications						
Program ex	ecution mode	scan round mo	de					
Program mo	de	Instructions, la	dder o	hart, C language				
Processing	speed	0.05us						
Power off re	tentive	FlashROM and Li-battery (3V button battery)						
Users' program capacity ^{#1}		384KB						
Total I/O numbers		24 points		32 points	48 points	60 points		
I/O points 82	Input numbers	14 points X0~X	15	18 points X0~X21	28 points X0~33	36 points X0~X43		
	Output numbers	10 points Y0~Y	11	14 points Y0~Y15	20 points Y0~Y23	24 points Y0~Y27		
Internal Coi	ls(X) ^{⊛3}	1280 points: X0)~X77	, X10000~X11777, X20	0000~X20277			
Internal Coils(Y) ^{®4}		1280 points: Y0)~Y77	, Y10000~Y11777, Y20	0000~Y20277			
Internal Coils(M_HM)		00000	M0~M74999 [HM0~HM11999] **					
Internal Colls(M, HM)		For Special Use ¹⁴ SM0~SM4999						
Procedure(S)		9000 points	S0~S7999 [HS0~HS999]					
points		7000 points T0~T4999 [HT0~HT1999]						
		100mS timer: set time 0.1-3276.7s						
Timer(T)	Specification	10mS timer: set time 0.01~327.67s						
		1mS timer: set	1mS timer: set time 0.001~32.767s					
	points	7000 points	C0~	C4999 [HC0~HC199	9]			
Counter(T)	Constitution	16 bits counter	set v	alue K0~32,767				
	Specification	32 bits counter: set value -2147483648~+2147483647						
Data David			D0~D69999 [HD0~HD24999] **					
Data Regist	er(D)	100000 words	For Special Use ¹⁶ SD0~SD4999					
			FD0~FD8191					
FlashROM	Register (FD)	14192 words	For	Special Use ^{**} SFD0~S	FD5999			
High speed	processing ability	High speed cou	inter,	pulse output, external i	nterruption			
Password P	rotection	6 bits ASCII						
Self-diagno	se Function	Power on self-o	heck,	monitor timer, gramma	ar check			

*1: The users' program capacity means the maximum program capacity when encrypted downloading.

#2: I/O points mean terminal number that users can connect from outside. #3: X stands for the internal input relays and can be used as middle relay when input points are exceeded

*4: Y stands for the internal output relays and can be used as multiple to the internal output points are exceeded.
*5: [] means the default power off retentive area, this area can't be changed.
*6: For special use means special usage registers that are occupied by system, can't be applied for other usage.

____ ____ ____ ____ ____ ____ ____

XD2 series basic unit performance specifications XD3 series basic unit performance specifications

lte	ems	Specifications							
Program exe	cution mode	scan round mode							
Program more	ie	Instructions, ladder chart, C language							
Processing s	peed	0.05us							
Power off ret	entive	FlashROM and Li-battery (3V button battery)							
Users' progra	am capacity ^{*1}	256KB							
	Total I/O numbers	16 points	24 points	32 points	48 points	60 points			
I/O points **2	Input numbers	8 points X0~X7	14 points X0~X15	18 points X0~X21	28 points X0~33	36 points X0~X43			
	Output numbers	8 pointsY0~Y7	10 points Y0~Y11	14 points Y0~Y15	20 points Y0~Y23	24 points Y0~Y27			
Internal Coil:	s(X) ^{*3}	1280 points: X0	~X77, X10000~X11	777, X20000~X202	77				
Internal Coils(Y)**		1280 points: Y0	~Y77, Y10000~Y11	777, Y20000~Y202	77				
Internal Calle (M. 1940)		44000	M0~M7999 [HM	M0~M7999 [HM0~HM959] **					
Internal Colls(M, HM)		11008 points	For Special Use ** SM0~SM2047						
Procedure(S)		1152 points	S0~S1023 [HS0~HS127]						
points		672 points	s T0~T575 [HT0~HT95]						
		100mS timer: set time 0.1~3276.7s							
Timer(T)	Specification	10mS timer: set time 0.01-327.67s							
		1mS timer: set	1mS timer: set time 0.001-32.767s						
	points	672 points	C0~C575 [HC0-	HC95]					
Counter(T)	On a sifila shia s	16 bits counte	16 bits counter: set value K0~32,767						
	Specification	32 bits counter: set value -2147483648~+2147483647							
Data Registe	ar(D)	11048 words	D0~D7999 [HD	D0~D7999 [HD0~HD999] #s					
Data Neglate	si(D)	11040 Words	For Special Use	For Special Use ^{⊗c} SD0~SD2047					
		5120 words	FD0~FD5119						
FlashROM H	tegister (FD)	0120 00100	For Special Use	For Special Use ^{₩e} SFD0~SFD1999					
High speed (processing ability	High speed co	unter, pulse output	, external interruption	on				
Password P	rotection	6 bits ASCII							
Self-diagnos	se Function	Power on self-	check, monitor tim	er, grammar check					

 #1: The users' program capacity means the maximum program capacity when encrypted downloading.

 #2: I/O points mean terminal number that users can connect from outside.

 #3: X stands for the internal input relays and can be used as middle relay when input points are exceeded.

 #4: Y stands for the internal output relays and can be used as middle relay when output points are exceeded.

 #5: I mans the default power of retentive area, this area can't be changed.

 #6: For special use means special usage registers that are occupied by system, can't be applied for other usage.

XDM series basic unit performance specifications

lte	ems	Specifications						
Program exe	cution mode	scan round mo	de					
Program mo	de	Instructions, la	dder charl	, C language				
Processing s	speed	0.05us						
Power off retentive		FlashROM and Li-battery (3V button battery)						
Users' program capacity ^{®1}		384KB						
	Total I/O numbers	24 points		32 points	60 points			
I/O points 82	Input numbers	14 points X0~>	(15	18 points X0~X21	36 points X0~X43			
	Output numbers	10 points Y0~Y	′11	14 points Y0~Y15	24 points Y0~Y27			
Internal Coil	s(X) ^{₩3}	1280 points: X	0~X77, X1	0000~X11777, X20000~X20277				
Internal Coils(Y) 144		1280 points: Y	1280 points: Y0~Y77, Y10000~Y11777, Y20000~Y20277					
Internal Coils/M_HM)			M0~M74	M0~M74999 [HM0~HM11999] =				
Internal Colls(M, HM)		92000 points	For Special Use ⁸⁶ SM0~SM4999					
Procedure(S)		9000 points	S0~S79	S0~S7999 [HS0~HS999]				
-	points	7000 points	T0~T49	T0~T4999 [HT0~HT1999]				
		100mS timer: set time 0.1~3276.7s						
Timer(T)	Specification	10mS timer: set time 0.01~327.67s						
		1mS timer: set time 0.001~32.767s						
	points	7000 points	7000 poin	ts				
Counter(T)	Onesiding	16 bits counter: set value K0~32,767						
	Specification	32 bits counter: set value -2147483648~+2147483647						
Data Bagiat	or(D)		D0~D699	999 [HD0~HD24999] **				
Data Regist	er(D)	100000 words	For Special Use 5 SD0~SD4999					
			FD0~FD8191					
FlashROM F	Register (FD)	14192 words	For Special Use ** SFD0~SFD5999					
High speed	processing ability	High speed cou	inter, pulse	output, external interruption				
Password P	rotection	6 bits ASCII						
Self-diagno:	se Function	Power on self-	check, mor	itor timer, grammar check				

*1: The users' program capacity means the maximum program capacity when encrypted downloading. *2: I/O points mean terminal number that users can connect from outside.

*3: X stands for the internal input relays and can be used as middle relay when input points are exceeded.

*4: Y stands for the internal output relays and can be used as microle relay men input points are exceeded.
*5: [] means the default power off retentive area, this area can't be changed.
*6: For special use means special usage registers that are occupied by system, can't be applied for other usage.

XDC series basic unit performance specifications

lt	ems	Specifications					
Program exe	ecution mode	scan round mode					
Program mode		Instructions, ladder chart, C language					
Processing speed		0.05us					
Power off retentive		FlashROM and Li	-battery (3\	/ button battery)			
Users' program capacity ^{#1}		384KB					
	Total I/O numbers	24 points		32 points	60 points		
I/O points #2	Input numbers	14 points X0~X1	5	18 points X0~X21	36 points X0~X43		
	Output numbers	10 points Y0~Y11	I	14 points Y0~Y15	24 points Y0~Y27		
Internal Coil	s(X) ^{#3}	1280 points: X0~	X77, X1000	0~X11777, X20000~X20277			
Internal Coils(Y) ^{®4}		1280 points: Y0~	1280 points: Y0~Y77, Y10000~Y11777, Y20000~Y20277				
Internal Coils(M, HM)		02000 points	M0~M74999 [HM0~HM11999] *5				
		92000 points	For Special Use ⁴⁶ SM0~SM4999				
Procedure(S)		9000 points	S0~S7999 [HS0~HS999]				
points		7000 points	D points T0~T4999 [HT0~HT1999]				
		100mS timer: set time 0.1~3276.7s					
Timer(T)	Specification	10mS timer: set time 0.01~327.67s					
		1mS timer: set time 0.001~32.767s					
	points	7000 points	C0~C499	9 [HC0~HC1999]			
Counter(T)	0.10.11	16 bits counter: set value K0~32,767					
	Specification	32 bits counter: set value -2147483648~+2147483647					
Data Daviat	(D)	400000	D0~D69999 [HD0~HD24999] *5				
Data Regist	er(D)	100000 words	For Special Use SD0~SD4999				
			FD0~FD8	191			
FlashROM F	Register (FD)	14192 words	For Special Use 4 SFD0~SFD5999				
High speed	processing ability	High speed count	ter, pulse ou	utput, external interruption			
Password P	rotection	6 bits ASCII					
Self-diagno	se Function	Power on self-ch	eck, monito	r timer, grammar check			

*1: The users' program capacity means the maximum program capacity when encrypted downloading.
*2: I/O points mean terminal number that users can connect from outside.
*3: X stands for the internal input relays and can be used as middle relay when input points are exceeded
*4: Y stands for the internal output relays and can be used as middle relay when output points are exceeded
*5: [] means the default power off retentive area, this area can't be changed.

*6: For special use means special usage registers that are occupied by system, can't be applied for other usage

Input specification and wiring

the Input includes NPN and PNP mode.

NPN mode specification

ltem

PNP mode specification

ordinary transistor output

Resistant load

cuit insulatio

Output specification and wiring

The output includes relay and transistor mode.

Output specification to avoid buring of PLC caused by load short circuit etc, please set a 5~10A puse every 4 points Relay output xternal powe Below AC250V, DC30V 5A-10A rcuit insulatio Mechanical insulation +<u>2</u>4V сом 🕀 – _____load ___________ AC power supply <AC250V LED Resistant loa the X ax load Inductive loa 80VA 100W ᡛ᠋᠋᠋᠋᠋᠆ᡛᠴ᠍᠊᠆᠓᠆ DC5V 2mA iload └──श्रित–॑ॄॼॿॎ–०००── se OFF→ON 10ms

relay output

High speed pulse output

ON→OFF

Model	RT or T
High Speed Pulse Output Terminal	Y0, Y1(Y2/Y3)(Y4/Y5~Y10/Y11)
External Power Supply	Below DC5~30V
Action Indicator	LED
Maximum Current	50mA
Max output pulse frequency	200KHZ

Power supply specification

AC power supply

Items	Content
Rated Voltage	AC100V~240V
Allowed Voltage Range	AC90V~265V
Rated Frequency	50/60Hz
Allow momentary power off time	Interruption Time≤0.5 AC cycle, interval≥1s
Impulse Current	Max 40A below 5mS/AC100V max 60A below 5ms/AC200V
Maximum Power Consumption	12W
Power Supply for Sensor	24VDC±10% 16 points max is 200mA ,32 points max is 400mA

DC power supply

Items	Content
Rated Voltage	DC24V
Allowed Voltage Range	DC21.6V~26.4V
Input Current (Only for basic unit)	120mADC24V
Allow momentary power off time	10msDC24V
Impulse Current	10ADC26.4V
Maximum Power Consumption	12W
Power Supply for Sensor	24VDC±10% 16 points max is 200 mA, 32 points max is 400mA

Please use the wire cable more than 2mm2 to avoid the decrease of voltage.

Even power off in 10ms, the PLC can still keep working. But when power is off for long time or voltage abnormally decrease, the PLC will stop working, output will be OFF. When power is on again, the PLC will run automatically.

The grounding terminals on basic units and extensions are connected together, and connected to the ground well (the third kind of ground).

XD2-16R/T												
		single	phase	increm	ental m	ode		AB phase mode				
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
max frequency	10K	10K	10K					5K	5K	5K		
4-time frequency								2/4	2/4	2/4		
Counter interruption	~	~	~					~	~	~		
X000	U							А				
X001								В				
X002												
X003		U							А			
X004									В			
X005			U									
X006										А		
X007										В		

				XD5	-24T/3	32T/48	T/60T					
		sin	gle pha	se incre	ementa	l mode			AB p	hase m	ode	
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HS
max frequency	80K	80K	80K					50K	50K	50K		
4-time frequency								2/4	2/4	2/4		
Counter interruption	1	4	~					~	~	~		
X000	U							А				
X001								В				
X002												
X003		U							А			
X004									В			
X005												
X006			U							А		
X007										В		
X010												
X011												
X012												
X013												

	XD5-48T6/60T6											
		single	ohase ii	ncreme	ntal mo	de		A	B phase	e mode		
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10
max frequency	80K	80K	80K	80K	80K	80K	50K	50K	50K	50K	50K	50K
4-time frequency							2/4	2/4	2/4	2/4	2/4	2/4
Counter interruption	~	1	~	~	~	~	\checkmark	~	~	~	~	~
X000	U						А					
X001							В					
X002												
X003		U						А				
X004								В				
X005												
X006			U						А			
X007									В			
X010												
X011				U						A		
X012										В		
X013												
X014					U						A	
X015											В	
X016												
X017												
X020						U						A
X021												В

DC5~30V

LED

0.3A

optocoupler in:

8	

VD2-16	121122	148/60	T/D/D
VD3-10	0124132	/40/00	

		sin	gle pha	se incre	emental	mode		AB phase mode					
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8	
max frequency	80K	10K	10K					50K	5K	5K			
4-time frequency								2/4	2/4	2/4			
Counter interruption	~	1	~					~	~	~			
	U							А					
X001								В					
X003		U							A				
X004									В				
X006			U							А			
										В			

>	8	3	

				Х	(D5-24	IT4/32	Т4					
		single	phase i	ncreme	ntal mo	de		A	3 phase	mode		
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10
max frequency	80K	80K	80K	80K			50K	50K	50K	50K		
4-time frequency							2/4	2/4	2/4	2/4		
Counter interruption	~	~	~	~			~	~	~	~		
X000	U						А					
X001							В					
X002												
X003		U						A				
X004								В				
X005												
X006			U						A			
X007									В			
X010												
X011				U						A		
X012										В		
X013												
X014												
X015												
X016												
X017												
X020												
X021												

XDM-24T4/32T4/60T4, XDC-24T/32T/48T/60T												
		sing	gle pha	se incre	emental	mode			AB p	hase m	ode	
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
max frequency	80K	80K	80K	80K				50K	50K	50K	50K	
4-time frequency								2/4	2/4	2/4	2/4	
Counter interruption	~	~	~	~				~	~	~	~	
X000	U							A				
X001								В				
X002												
X003		U							А			
X004									В			
X005												
X006			U							A		
X007										В		
X010												
X011												
X012				U							A	
X013											В	

XDM-60T10												
				single p	hase in	cremer	tal moo	le				
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC14	HSC16	HSC18	HSC20	HSC22
max frequency	80K	80K	80K	80K	80K	80K	80K	80K	10K	10K		
4-time frequency												
Counter interruption	~	1	~	~	~	~	~	~	~	~		
X000	U											
X001												
X002												
X003		U										
X004												
X005												
X006			U									
X007												
X010												
X011				U								
X012												
X013												
X014					U							
X015												
X016												
X017						U						
X020												
X021												
X022							U					
X023												
X024												
X025								U				
X026												
X027												
X030									U			
X031												
X032												
X033										U		
X034												
	-											

	XDM-60T10											
					AB ph	ase mo	de					
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC14	HSC16	HSC18	HSC20	HSC22
max frequency	50K	50K	50K	50K	50K	50K	50K	50K	5К	5К		
4-time frequency												
Counter interruption	~	1	~	~	~	~	~	~	~	~		
X000	Α											
X001	В											
X002												
X003		A										
X004		В										
X005												
X006			Α									
X007			В									
X010												
X011				Α								
X012				В								
X013												
X014					A							
X015					В							
X016												
X017						A						
X020						В						
X021												
X022							Α					
X023							В					
X024												
X025								A				
X026								В				
X027												
X030									A			
X031									В			
X032												
X033										A		
X034										В		
X035												
	-	-				-			-		-	

Serial port (RS232/RS485) communication parameters

Item	Parameters
Communication mode	Halfduplex
Baud rate	9600bps, 19200bps (defaulted), 38400bps, 57600bps, 115200bps
Data type	Data bit: 5, 6, 7, 8(defaulted), 9 Stop bit: 1(defaulted), 1.5, 2 Parity bit: no parity, odd, even(defaulted)
Mode	RTU(defaulted), ASCII, free format, fieldbus X-NET
Station number	1~255 (defaulted is 1)
Before sending delay	1~100ms(defaulted is 3ms)
Reply overtime	1~1000ms(defaulted is 300ms)
Retry times	1~20 times(defaulted is 3 times)

Instruction list

Application instruction

Special instruction

Туре	Instruction	Function
Pulse output	PLSR	Multi-segment pulse output
	PLSF	Variable frequency pulse output
	ZRN	Mechanical return to zero
	PLSMV	Refresh the pulse number immediately
	STOP	Stop the pulse
High speed counter	DMOV	Read 32 bits high speed counter
	DMOV	Write 32 bits high speed counter
	CNT (_AB)	100-segment high speed counter interruption
	CNT (_AB)	Electronic cam
	RST	Reset high speed counter
Modbus communication	COLR	Modbus read coil
	INPR	Modbus read input coil
	COLW	Modbus write single coil
	MCLW	Modbus write multi coils
	REGR	Modbus read register
	INRP	Modbus read input register
	REGW	Modbus write single register
	MRGW	Modbus write multi registers
Precise timing	STR	Precise timing
	DMOV	Read precise timing register
	STOP	Stop precise timing
Interruption	EI	Enable the interruption
	DI	Disable the interruption
	IRET	Interruption return
Sequence block	SBLOCK	Block start
	SBLOCKE	Block end
	SBSTOP	Stop block
	SBGOON	Continue running the stop block
	WAIT	Wait
Write and read the module	FROM	Read the module
	то	Write in
Others	FRQM	Frequency measurement
	PWM	Pulse width modulation
	PID	PID control
	NAME C	C function block
	INAME_C	G IUNCIUN DIOCK

PLC

Function		
the mean value		
ic AND		
ic OR		
ic XOR		
erse		
ative		
hmetic shift left		
hmetic shift right		
ic shift left		
ic shift right		
le shift left		
le shift right		
shift left		
shift right		
d shift left		
d shift right		
d integer change to double word integer		
its integer change to floating number		
its integer change to floating number		
ating number change to integer		
D code change to binary		
ary change to BCD code		
change to ASCII		
CII change to hex		
oding		
n-bit encoding		
-bit encoding		
ary change to gray code		
y code change to binary		
ating number comparison		
ating number range comparison		
ating number addition		
ating number subtraction		
ating number multiplication		
ating number division		
ating number square		
ating number sine		
ating number cosine		
ating number tangent		
ating number arcsine		
ating number arccosine		
ating number arctangent		
d clock data		
e clock data		

Basic instruction

Instruction	Function	
LD	Initial logic normally open contactor	
LDI	Initial logic normally close contactor	
AND	Serial connection normally open contactor	
ANI	Serial connection normally close contactor	
OR	Parallel connection normally open contactor	
ORI	Parallel connection normally close contactor	
LDP	Initial logic rising-edge of pulse	
LDF	Initial logic falling-edge of pulse	
ANDP	Serial connection rising-edge of the pulse	
ANDF	Serial connection falling-edge of the pulse	
ORP	Parallel connection rising-edge of the pulse	
ORF	Parallel connection falling-edge of the pulse	
LDD	Read normally open contactor	
LDDI	Read normally close contactor	
ANDD	Read normally open contactor, serial connection	
ANDDI	Read normally close contactor, serial connection	
ORD	Read normally open contactor, parallel connection	
ORDI	Read normally close contactor, parallel connection	
OUT	Coil drive	
OUTD	Output to the contactor	
ORB	Parallel connection of serial circuit block	
ANB	Serial connection of parallel circuit block	
MCS	New generatrix start	
MCR	Generatrix reset	
ALT	Coil reverse	
PLS	ON for one scanning period at rising-edge	
PLF	ON for one scanning period at falling-edge	
SET	Keep the coil ON	
RST	Reset the coil	
TMR	Timer drive	
OUT	Counter drive	
RST	Reset the contactor or present value	
END	I/O operation and return to step 0	
GROUP	Instruction block folding start	
GROUPE	Instruction block folding end	